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Fig. 3. SEM backscatter electron images of a longitudinal cross-section of the HIP’d Ta20Nb20Hf20Zr20Ti20 alloy (a) before and (b, c and d) after compression deformation at

room temperature.

phase in the Ti alloys) at RT. Therefore, the presence of the disor-

dered BCC phase in the quinternary alloy, which contains 40 at.%

of the BCC-stabilized elements, is expected. It is however not yet

known if the BCC phase is thermodynamically stable at RT or it

is metastable and formation of the low temperature HCP phase

is kinetically restricted due to slow diffusivity of elements in the

multicomponent alloys [1,3,24]. In order to address this question,

an additional study involving long-time annealing at temperatures

below 600 ◦C is required.

Using rule of mixtures (i.e. Vegard’s law [25]), one can calculate

the ‘theoretical’ crystal lattice parameter amix of the disordered BCC

solid solution:

amix =
∑

ciai (1)

Table 2
The lattice parameter, a, of the BCC crystal structure, density, �, Vickers microhardness, Hv, and yield strength, �0.2, of the pure metals and the studied alloy.

Metal Ta Nb Hf Zr Ti Alloy Calc. Alloy Exp.

a (pm) 330.3 330.1 355.9 358.2 327.6 340.9 340.4

� (g/cm3) 16.65 8.57 13.31 6.51 4.51 9.89 9.94

Hv (MPa) 873 1320 1760 903 970 1165 3826

�0.2 (MPa) 170 240 240 280 195 226 929
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Here ci is the atomic fraction of element i. The calculated (Calc.) amix

is given in Table 2. The experimental (Exp) a value, determined from

the X-ray diffraction pattern, is also given in this table. It can be seen

that the calculated and experimental values of a are practically the

same, which indicates that the lattice parameter of the alloy follows

rule of mixtures. This analysis supports the X-ray results that the

alloying elements are randomly distributed in the BCC phase.

The theoretical density, �mix, of a disordered solid solution is

given by Eq. (2):

�mix =
∑

ciAi∑
ciAi/�i

(2)

where Ai and �i are the atomic weight and density of element i. The

�i values of the alloying elements taken from ref. [26] and the cal-

culated �mix value of the alloy (9.89 g/cm3) are given in Table 2. It

can be seen that the calculated density is about 0.50% smaller than

the experimentally determined density of the alloy (9.94 g/cm3).

This very small difference can be due to experimental errors in

determining the alloy composition and density. We may thus con-

clude that the alloy density follows the rule of mixtures, which is

also in agreement with the random (disordered) distribution of the

alloying elements in the BCC lattice of the alloy.

The RT yield strength and Vickers microhardness of the HIP’d

Ta20Nb20Hf20Zr20Ti20 alloy are �0.2 = 929 MPa and Hv = 3826 MPa,

which gives the hardness to stress ratio � = Hv/�0.2 = 4.12. This

is noticeably higher than the value � = 3, which was predicted

theoretically and observed experimentally for non-strain hard-

ening materials [27]. Taber [27, p. 175] has noticed that � = 3

also holds for pure metals and commercial alloys, regardless of

the initial state of strain hardening, if the engineering stress �8

corresponding to the engineering strain ε ∼ 8%, which is the aver-

age plastic strain during Vickers indentation, is used instead of

�0.2. From the deformation behavior of the Ta20Nb20Hf20Zr20Ti20

alloy (see Fig. 2), �8 = 1270 MPa is obtained. This indeed gives the

value � = Hv/�8 = 3.0. One may therefore conclude that the high

hardness to yield strength ratio observed for the studied alloy

is caused by strain hardening of the initially annealed alloy dur-

ing indentation. This analysis also indicates that preliminary 8%

compression straining of this alloy would allow achieving the

yield strength of 1270 MPa and still retain good ductility, thus

providing the mechanical properties that are much superior to pre-

viously reported HEAs. It is worth noting that, among all other

high entropy alloys with the BCC structure produced so far, the

Ta20Nb20Hf20Zr20Ti20 alloy has the highest RT compression ductil-

ity (>50%) [5,8].

The microhardness and the yield strength of the

Ta20Nb20Hf20Zr20Ti20 alloy do not follow the rule of mixtures

of the respective properties of the constituent elements. Indeed,

Table 2 shows typical Hv [28] and �0.2 [29] values for pure elements

at RT. The rule of mixtures microhardness, (Hv)mix =
∑

ciHvi, and

yield strength, (�0.2)mix =
∑

ci�0.2i, of the alloy are much smaller

than the respective experimental (Exp.) Hv and �0.2 values (see

Table 2). The high microhardness and yield strength of the alloy

are likely originated from solid solution-like strengthening.

It is widely accepted that the solid solution strengthening of

metallic solid solutions arises from the elastic interactions between

the local stress fields of solute atoms and those of dislocations

[30–34]. The magnitude of the interaction force, fm, increases with

an increase in both the atomic size misfit parameter, ıa, and the

modulus misfit parameter, ıG, of the solute and solvent atoms:

fm = Gb2ı = Gb2
[
ıG + ˇıa

]
(3)

Here ıG = (1/G)dG/dc, ıa = (1/a)da/dc, G is the shear modulus of the

alloy, b is the magnitude of the Burgers vector, and ˇ is a con-

stant, which value depends on the type of the mobile dislocation.

Table 3
Atomic radius, r = (

√
3/4)a, and shear modulus, G, of pure elements.

Element/Property Ta Nb Hf Zr Ti

r (pm) 143.0 142.9 154.1 155.1 141.8

G (GPa) 69 38 30 33 44

Generally, ˇ is 2–4 for the screw dislocations and ≥16 for edge

dislocations [30,32]. In a concentrated solid solution, the solute-

induced stress increase, �� can be expressed as a function of fm,

solute concentration, c, and dislocation line tension, EL, [31,35]:

��b2 = Af 4/3
m c2/3E−1/3

L (4)

Here A is a dimensionless material constant. Using the expression

EL = Gb2/2 and combining Eqs. (3) and (4), the following equation

for �� is obtained [36]:

�� = A′Gı4/3c2/3 (5)

where A′ is a material-dependent dimensionless constant, which

is of the order of 0.1 [31]. Unfortunately, the mechanisms of solid

solution strengthening were developed for conventional solid solu-

tions, in which the concentration of the matrix element (solvent)

exceeds 60–70%, and these mechanisms may not be applicable to

high-entropy alloys, where all elements are at almost the same

atomic concentrations (≤20%) and multiple element interactions

are expected. Nevertheless, an attempt to estimate the effects of

the atomic size (lattice) and shear modulus distortions on the dis-

location force, fm, in the HEA will be given below.

Each solute in the BCC crystal lattice has 8 nearest-neighbor

atoms, thus forming a 9-atom cluster. In dilute alloys with no solute

interactions, the neighbors are all solvent atoms and the local lat-

tice distortions near the solute are caused by the atomic size and

modulus mismatches between the solute and the solvent atoms.

In the heavily alloyed multi-component alloy, on the other hand,

an i element can neighbor with different elements and the lattice

distortion near this element is now a function of the atomic size

and modulus mismatches between this element and all its nearest

neighbors. The local environment around each element can roughly

be estimated if we assume that the local concentration is equal

to the average concentration of the alloy. In this case, an i ele-

ment will have Nj = 9cj of j-atom neighbors and Ni = 9ci − 1 of i-atom

neighbors. For example, in the 5-element alloy with equimolar con-

centrations, an element i in the center site of the BCC unit cell will

have, in average, 1.8 atoms of each of the other elements and 0.8

atoms of the same element in the corner sites. Then the lattice dis-

tortion ıai (per atom pair) in the vicinity of an element i is estimated

as an average of the atomic size difference of this element with its

neighbors:

ıai = 9

8

∑
cjıaij (6)

Here cj is the atomic fraction of a j element in the alloy, 9 is the

number of atoms in the i-centered cluster in the BCC lattice, 8

is the number of atoms neighboring with the center atom i, and

ıaij = 2(ri − rj)/(ri + rj) is the atomic size difference of elements i and

j. Similarly, the modulus distortion, ıGi, in the vicinity of an element

i is estimated as

ıGi = 9

8

∑
cjıGij (7)

where ıGij = 2(Gi − Gj)/(Gi + Gj).

The atomic radii and shear moduli of the alloying elements

are given in Table 3, while the calculated ıaij and ıGij values

are given in Table 4. Using these values and Eqs. (6) and (7),

the lattice- and modulus-distortions near each element in the

Ta20Nb20Hf20Zr20Ti20 solid solution alloy were calculated and the

results are given in Table 5.
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Table 4
Relative atomic size difference, ıaij (underlined numbers), and modulus difference,

ıGij (bold numbers), of the alloying element pairs.

Element i/j ıaij/ıGij Ta Nb Hf Zr Ti

Ta 0 0.58 0.79 0.71 0.44
Nb 0.00 0 0.24 0.14 −0.15
Hf 0.07 0.08 0 −0.10 −0.38
Zr 0.08 0.08 0.01 0 −0.29
Ti −0.01 −0.01 −0.08 −0.09 0

The data in Table 4 shows that the pairs of Hf and Zr elements,

as well as the pairs of Ta, Nb and Ti elements have very little atomic

size difference, ıaij ≈ 0.01. On the other hand, the size difference of

Hf and Zr with three other elements is about one order of mag-

nitude higher (ıaij ≈ 0.08). The absolute values of the estimated

lattice distortions near each element (see Table 5) are of the same

order (|ıai| ∼ 0.04–0.06). As it is expected, smaller elements, Ta, Nb

and Ti, produce almost the same local tension strains (ıai ∼ −0.04),

while larger elements, Hf and Zr, produce local compression strains

(ıai ∼ 0.05). To roughly estimate the contribution of the lattice dis-

tortions to fm and ��, we may consider the alloy as a pseudo-binary

solid solution, with Ta, Nb and Ti as the solvents and 40 at.% of Hf

plus Zr as the solutes. Designating the average strain field around

Ta, Nb and Ti to be zero, the lattice distortions near Hf and Zr atoms

are estimated to be ıa ∼ 0.09. By assigning G = 40 GPa, b = 295 pm,

ˇ = 2, ignoring for now the modulus distortion contribution and

using Eqs. (3) and (5), one can estimate fma ≈ 6.3 × 10−10 N and

��a ≈ 221 MPa. Here subscript ‘a’ indicates the lattice distortion

contribution.

The elastic modulus difference of the alloying elements has a

wide spectrum of values, from ıGij = 0.10 for the Hf–Zr atom pair to

0.79 for Ta–Hf atom pair (Table 4). Pairing of Ta atoms with other

elements provides the strongest shear modulus effect (ıGij values

are in the range from 0.44 for Ta–Ti to 0.79 for Ta–Hf), while Hf–Zr

and Nb–Zr pairs resulted in smaller ıGij values of 0.10 and 0.14,

respectively. The calculated modulus distortions near a particular

element in the BCC lattice of the alloy, ıGi, also have the largest

values of ıGTa = 0.57 near Ta atoms (Table 5), while ıGi values near

other four elements are considerably smaller and their average is

about −0.181. Noting that Ti, Zr, and Hf occupy the same column

in the periodic table, a reflection of the common aspects of their

electronic structure, and that the modulus of Nb is similar to that

of these three elements, one can assert the modulus of ‘the solvent’

as a weighted average of these four elements. In essence the Ta

interactions produce a far larger deviation in the local forces than

all the other elements, and thus produce a large effective modulus

misfit. Assuming that the modulus mismatch contributions to the

interaction force fmG and stress increase ��a is mainly due to Ta,

these contributions are estimated to be fmG ≈ 19.8 × 10−10 N and

��G ≈ 647 MPa.

The estimated values for fma and fmG are of about one order

of magnitude higher as those reported for binary solid solutions

[35]. This very rough analysis of the contributions of the atomic

size and modulus difference to the yield strength of the alloy pre-

dicts �0.2 = (�0.2)mix + ��a + ��G ≈ 1094 MPa, which is about 18%

higher than the experimentally observed �0.2 = 929 MPa. This can

be considered as a good agreement. Indeed, the model does not

take into account thermally activated processes, which should

Table 5
Calculated lattice distortion, ıai , and modulus distortion, ıGi , (Eqs. (6) and (7)) near

each element in the BCC lattice of the TaNbHfZrTi alloy.

Element Ta Nb Hf Zr Ti

ıai −0.035 −0.035 0.049 0.057 −0.044

ıGi 0.571 −0.073 −0.331 −0.228 0.089

ease the deformation processes and reduce the stress. The analysis

also shows that the modulus distortions are likely to be stronger

obstacles for dislocation movements in this alloy than the lattice

distortions. The good ductility of the alloy at RT is probably due

to simultaneous dislocation and twin activity, which effectively

reduce stress localization along grain boundaries. It is apparent that

the grain boundaries are the weakest structural elements along

which cracks eventually develop after heavy deformation in the

Ta20Nb20Hf20Zr20Ti20 alloy.

5. Conclusions

A refractory alloy, Ta20Nb20Hf20Zr20Ti20, produced by vacuum

arc-melting, has a single-phase body-centered cubic (BCC) struc-

ture with the lattice parameter a = 340.44 pm. No phase changes

occur after HIPing the alloy at 1473 K, 207 MPa for 3 h. The alloy

density and Vickers microhardness after HIPing were � = 9.94 g/cm3

and Hv = 3826 MPa. The alloy has high compression yield strength

(�0.2 = 929 MPa) and ductility (ε > 50%). The alloy shows consider-

able strengthening and homogeneous deformation. The high stress

is explained by solid-solution strengthening.
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